
1 | ANU College of Engineering and Computer Science	 September 2013

SPACE CONVOY CONTROL

Assignment for all students of Real-time and Embedded Systems

This is the only marked assignment of the 
course. Thus extra care is expected on all levels.

Overview
Regulating airspace is a classical and demand-
ing real-time task and we will take it to the next 
level. Instead of handling glide slopes which 
are radially distributed around a static airport, 
we deal in approach paths from any direction 
towards a mobile charger grid – a task which 
can be embedded into a real-time approach 
schedule.

Your part is the design of the charge/control 
modules which go into each vehicle.

A swarm of vehicles will be provided, which 
have default behaviours to keep them in mo-
tion, together and collision free.

All vehicles have a local “charge” which need 
to be replenished by passing through “energy 
globes”. For unknown physical reasons only 
passing of three energy globes in fast succes-
sion replenishes the charge to full (see small 
graphic on page 2). Vehicles which run out of 
charge mysteriously disappear.

As this is a science fiction assignment, we 
can safely assume that we have semiconduct-
ing coils in on-chip, miniature fusion reactors 
which supply the comms and on-board com-
puters. Hence all energy loss will be due to 
propulsion, which means that the loss rate is 
proportional to the current acceleration and 
thus acceleration-free, “drifting” vehicles are 
not consuming energy.

Sensors, Actuators & 
Communication
Each vehicles runs a dedicated task together 
with an interface to the local sensors, commu-
nication interfaces and actuators.

The sensors include position, velocity and ac-
celeration as well as current charge. If the ve-

hicle is close enough to one or multiple energy 
globes to utilize them, the sensors also display 
the position and current velocity of all close 
energy globes.

The actuator system consists of setting an 
absolute destination position and throttle 
value. The underlying cruise control systems 
automatically handles the steering and accel-
eration. Once the destination point has been 
reached the throttle automatically jumps back 
to idle which means that default swarming be-
haviour takes over. The vehicles do not slow 
down when approaching the destination point 
and rather pass through the destination point. 
This helps to keep the controls fluent and the 
vehicles in motion. Collision avoidance re-
flexes are always active and prevent vehicles 
from crashing into each other. Note that desti-
nations might become unreachable, if multiple 
vehicles are bound for the same destination.

The vehicles are also equipped with a message 
passing system which allows to broadcast a 
message which will be received by all vehicles 
on close proximity.

Finally there is also a function which allows 
direct access to the underlying, secret clock 
of the world. Wait_For_Next_Physics_Update 
will put the task to sleep until anything actually 
happened (which includes communication). 
This relieves the vehicles from busy waiting on 
the world to change.



2 | ANU College of Engineering and Computer Science	 September 2013

The Animation
The provided graphical animation of the swarm 
offers third person views as well as the view 
from one of the vehicles while it is passing 
through the swarm. The communication range 
can be visualized by drawing connecting lines 
between all vehicles which are currently in 
communication range. The colours represent 
their charging state as well as the control state. 
Turquoise vehicles are currently following their 
swarming instincts are not explicitly controlled 
by the associated task. The colour saturation 
reflects the level of charge. Once vehicles go 
into manual control (throttle and destination 
is set) they turn to a more red colour schema. 
The energy globe(s) are dark ruby coloured 
spheres.

Design Constraints
The final solution which is requested from you 
should be deployable on actual vehicles. While 
the provided interfaces make it easy to guar-
antee that, there is no constraint which would 
force you to use them. “Looking underneath 
the hood” is encouraged of course if you want 
to see how such a simulation can be imple-
mented on a computer system. You can, in fact, 
ignore any provided code framework and can 
come up with your own or an adapted version 
of the provided framework – as long as you 
can argue that the control systems would still 
be deployable on individual vehicles moving 
under physically realistic constraints and with 
limited communication ranges. Also: nothing 
stops you from enhancing to existing frame-

work to cater for more real-world constraints, 
like lossy communication channels or imper-
fect sensing. Nevertheless the first stage of 
the assignment will allow you to introduce ad-
ditional means of communications which are 
not necessarily physically implementable.

Real-time Constraints
All calculations inside the vehicle tasks have 
an implicit deadline given by the update from 
the underlying physics engine. This deadline 
is not hard as seen by the local tasks, yet all 
tasks overrunning this deadline in synchrony 
will slow down the simulator. Simulated time 
is not affected by this – only the update time 
intervals will become larger.

In order to understand the timing and synchro-
nization constraints of your individual vehicle 
tasks, you are encouraged to analyse the po-
tential blocking interactions, starting from the 
vehicle interface package.



3 | ANU College of Engineering and Computer Science	 September 2013

Design Goals
The overall design goal is to coordinate the 
swarm to a degree that its behaviour becomes 
predictable in the sense that all vehicles are 
guaranteed to be recharged on a regular basis. 
Traffic shall be coordinated in the sense that 
collisions (or the potential thereof) are to be 
avoided by introducing appropriate scheduling 
and communication. The task can be solved in 
two stages:

a.	Allowing a central coordinator.
b.	Fully distributed.

The first stage still allows for a central coor-
dinator to be introduced and all tasks are al-
lowed to communicate with this entity (or 
multiple thereof). The implementation of those 
central instances can employ shared memory 
as well as message based forms of commu-
nication. Some are obviously questionable to 
impossible in a physical deployment of your 
system, yet this stage might help you to de-
velop ideas which can then be considered for 
the second stage.

The second stage does not allow for a central 
coordinator and all planning and scheduling 
now needs to be done on the individual vehi-
cles only using local communication. This is 
hard.

Energy Globe Configurations
Two pre-programmed energy globe configu-
rations are available. One where the a grid of 
27 globes stays roughly in the middle of the 
swarm at all times, and one where the a wid-
er grid of again 27 globes will glide through 
space in a linear motion. You can change the 
configurations by changing the according con-
stant in the Configuration package. Feel free 
to add or test others – the only option which is 
discourage as too unrealistic is a stationary set 
of energy globes.

Potential Issues
The task can be a impossible to solve, if no 
vehicle found an energy globe before the initial 
charges run out. Don’t worry about this case – 
this is just space travellers’ bad luck.

The Programming Framework
The provided code has been successfully 
compiled and tested on:

•	 Linux: Ubuntu version 12.04, and lab com-
puters. Depending on the install version, it 
might be necessary to install glutg3 and 
glutg3-dev via the built-in package manager.

•	 Mac OS: running under OS X version 10.6 
and 10.8.

•	 Windows: XP, Win7 and Win8. The freeglut 
library need to be in the same directory as 
the executable (already placed to the right 
spot in the provided project).

On the top level directory of the code frame-
work you will find three different project files 
(one for each major platform). Open the one 
fitting the computer you are currently sitting in 
front of in GPS (GNAT Programming Studio) 
and execute “Build all”. This should produce an 
executable binary file for your platform. Each 
project file also has two build configurations 
which can be selected within GPS: Develop-
ment and Production. The first will include all 
run-time code checks, while the second will 
optimise the code for maximal performance. 
While the latter is irrelevant in terms of a real-
time project, it might still allow you to run tests 
with a larger number of vehicles. Experienced 
performances are also dependent on your in-
stalled graphics processor.

Parts of the provided framework are based on 
the Globe_3D project (an OpenGL 3D engine), 
which is maintained by Gautier de Montmollin.

Deliverables
You need to submit a report (in pdf) as well as 
your code. If you convince us about a great de-
sign and that you understood the problem to a 
degree that you would not need to implement 
and run tests, then you don’t need to provide 
code. In this case you need to be prepared to 
explain your proposed implementation in the 
exam in great detail.

Report

Your report should primarily answer the follow-
ing questions:

•	 How can you guarantee that a minimal num-
ber of vehicles will sustainably survive?

•	 What assumptions did you make to provide 
this guarantee?

•	 Which parts of your system need to/could 
be precalculated and which parts need to/
could be experimented? How did you de-
cide in cases where both was possible?



4 | ANU College of Engineering and Computer Science	 September 2013

•	 How did you calculate or measure the maxi-
mal number of vehicles which you can sus-
tain?

Some guidelines to structure your report:

•	 Based on the general description of the 
problem at hand, make the constraints 
which you have addressed in your design 
explicit and list them as precisely as you 
see fit.

•	 Documentation of your design. Specific 
emphasis should be given to explain your 
design decisions. Give reasons for each of 
those. Make clear which constraints you 
employed as ‘driving concepts’, which have 
been considered, and which have been pur-
posefully ignored (for instance to allow for a 
cleaner, easier maintainable design). 

•	 Provide documentation of test runs. Give a 
precise motivation for each of your tests.

The following questions might help you to eval-
uate your design:

•	 How does your design scale?
•	 Which real-time constraints are or could be-

come critical if the system is extended?
•	 Do you provide for graceful degradation in 

case that parts of your system become un-
responsive or provide ‘unreasonable’ infor-
mation?

•	 To which parts of your system could you ap-
ply strict algebraic verification?

Code

Submit the manipulated packages (vehicle 
task & message structure) together with the 
packages which you added on top. Your code 
will be evaluated according to common profes-
sional practice. We do not enforce a specific 
coding schema, but request consistency and 
a general high standard on the basic coding 
level. Make sure all your identifiers have good 
names, all scopes and access constraints are 
set as tight as possibly, and full use has been 
made of compile time checks.

Expect to be limited to distinction range marks 
if your design only considers stage one solu-
tions and to find yourself in “HD” range if your 
design is a convincing solution for stage 2. Yet, 
those are only guidelines, and an outstanding 
stage one solution can be considered for full 
marks as well. Allow yourself plenty of time to 
come up with a solid concept first. Without a 
clear idea you are bound for chaos in this as-
signment.

General

Use graphical or any other means to structure 
and express your ideas as precisely as you 
can. Be also prepared to ‘defend’ your docu-
mentation in an oral exam situation. The docu-
mentation should be printed and submitted at 
least three days before the laboratory exams. 
Overall assignment time is six weeks. Due date 
according to web-site.


